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Abstract

High throughput plant phenotyping is the advanced scientific approach for rapid phenotyping of plant traits, especially 
high consumable grains or crops, which is designed to process a high volume of data in a short time for plant 
breeders and cultivars to utilize. Detection and counting of crop traits such as plants, fruits, wheat or rice spikes, sorghum 
head, and plant diseases is more advanced research in this field, where real-world data are collected using aerial and 
land-based imaging platforms equipped with a variety of geospatial sensors, and their statistical analysis is conducted 
using Artificial Intelligence (AI) and Deep Learning-based solutions. In this paper, we contributed to solving such a 
challenge of phenotyping by detecting and counting wheat spikes from land-based imaging by applying a Region-based 
Convolutional Neural Network (CNN) model. Our method employs the use of CNN to extract features from the imaging 
platform and the learning model is trained to detect and count wheat spikes in field images based on these extracted 
features. Using the publicly available SPIKE dataset to train and test our model, our proposed method achieved 98% 
average precision and 91% average F1 score on the test set. Our results show a significant improvement of 2.9% and 
11.2% in detection accuracy as well as 1% and 3% in average precision metric over state-of-the-art Faster Region-
based Convolutional Neural Network (Faster-RCNN), and RetinaNet, respectively, and have the potential to significantly 
benefit plant breeders by facilitating the selection of wheat varieties with high yields.
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1. Introduction

Modern AI-based agricultural technologies are used to 
observe plants scientifically and systematically. Plant 
Phenotyping facilitates us to understand how a plant grows 
and its development in various conditions. It describes 
the study of plant structure and function which depends on 
the dynamic interaction between genetic background and 
environment. Again, phenotyping in- cludes the idea of 
measuring and analyzing observable plant characteristics 
which are advantageous in the agri- cultural aspect for 
selecting crops [1]. Though pheno- typing is not the latest 
innovation, manually monitoring features like plant height, 
growth, tolerance, resistance, nitrogen content, biomass, 
and yield counts takes a lot of time and effort. With high 
throughput plant phenotyping using image-based sensors, 
reconfigurable harvesting tools, and drones generates 
much more information in less duration. Modern plant 
phenotyping is an emerging science that gives important 
details on how genetics, epigenetics, environmental stresses, 
and crop manage- ment may influence the selection of 
plants that are fit for their surroundings. It is feasible to crop 
productivity to meet the demands of the increasing human 
population by implementing high throughput phenotyping 
[2].

Wheat is one of the world’s three most important crop 
species, which is trading for nearly $50 Billion globally on 
an annual basis [3]. It is the main source of nutrition for 2.5 
billion people living in 89 nations [4]. As the population in 

the world is increasing and so the demand for cereal crops 
like Wheat, Sorghum, Millets, Maize, and Rice is also 
increasing as these are the main grain meals for the majority 
of the people. Among these, wheat is traded larger than all 
other crops combined and is produced on the largest amount 
of land of any food crop. So, it can be said that Wheat is 
the backbone of food security [5]. So, this emphasizes the 
importance of finding wheat plant kinds that are hardier and 
yield more production while also improving tolerance to 
biological and chemical challenges.

The formation of the spike or ear is a critical plant 
physiological phase in the growth of wheat. So the spike 
numbers detected in a wheat field got an enormous attraction 
in modern days for high throughput plant phenotyping. In Fig. 
1, a general workflow of high throughput plant phenotyping 
is shown, where images can be collected from land-based or 
aerial imaging or both to conduct computer vision tasks 
such as ob- ject detection, instance segmentation using 
methods like image processing, machine learning or deep 
learning for further data processing. These data acquisition 
and assessment processes can be used to carry out high 
throughput phenotyping tasks such as spike detection, 
plant growth, seedling count, vegetation indexing, and 
density analysis. In the early days of phenotyping, deep 
learning approaches were applied for spike detection in a 
controlled environment including indoor agriculture and 
vertical farming. However, it has always been a more 
challenging task to detect spikes in real-world scenarios. 
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Fig. 1: High Throughput Phenotyping process workflow

Development of region-based convolutional neural network 
(R-CNN) is a step towards solving the problem of detecting 
objects in complex scenarios through the combined use 
of region proposals with CNN features [6]. Utilizing the 
computed CNN features from extracted region proposals 
results in a far better detection and localization of objects in 
images than other previous methods that didn’t rely on those 
region proposals. This success naturally can be translated 
to the challenging task of detecting wheat spikes from 
real-world field images with state-of-the-art precision and 
accuracy.

Many deep neural networks, Fast R-CNN, Faster R- 
CNNN, RetinaNet, YOLOv5 (You Only Look Once), etc. 
are developed for wheat spike detection and counting [3, 
7, 8]. These models are trained with a large spike dataset 
so that later it would be able to detect spikes from images. 
The detected spikes can describe the distinctive features of 
wheat varieties, and the results can then be utilized for smart 
farming, data intelligence, and predictive analysis using 
Artificial Intelligence (AI) in real- time. So, our purpose 
here is to apply a deep learning method to detect wheat 
spikes from real-world field images with better accuracy 
and precision than existing state-of-the-art methods and to 
employ our method in further applicable scopes of AI in 
agriculture.

Our proposed method accomplished an average accu- racy 
of 84% and the F1 score is 0.91 in detecting wheat spikes 
on SPIKE dataset [3]. The approach generates a detailed 
list of bounding box regions for recognizing spikes in photos 
that are not noticeably visible in the training phase. A robust 
deep learning study requires extensive training with large, 
increased data sets. In our study, we intended to develop a 
detection method that can classify wheat spikes with better 
accuracy. We have compared our results with two existing 
approaches developed by hasan et al. [3] wen et al. [7] and 
claim to be more efficient, feasible, and robust in the field of 
spike detection in a complex environment.

1.1 Background

In the field of phenotyping, many research works are ongoing 
for the detection, analysis, and counting of wheat spikes. 
Here, we will discuss some recent works that have been done 
on plant phenotyping using Deep Learning methods. Among 
researchers studying plant phenotyping, there has been a 
significant amount of literature on suggested techniques. 
Some novel deep learning approaches are proposed for the 
detection and recognition of wheat spikes.

Hasan et al. [3], in their paper, proposed a fine- tuned 
Region-based Convolutional Neural Network(R- CNN) 
model for classifying and analyzing wheat spikes from field-
based images. The authors here used Faster R-CNN as the 
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model structure to be trained on a training set. A pretrained 
VGG-16 model was used as the backbone architecture to 
extract features from input images which were then fed to the 
Region Proposal Network (RPN) to regress bounding boxes 
and the Classification Network to classify the bounding 
boxes as either spike or background. A spike dataset named 
SPIKE was developed by capturing in-field images using 
high definition RGB cameras for training the Faster R- CNN 
model. The model achieved an average accuracy and F1 
score of 93.4% and 0.95. But the model was not applied to 
oblique-view images which makes it prone to low accuracy 
when it comes to partially occluded spikes, especially in 
high-density regions.

Misra et al. [4] developed SpikeSegNet, a novel deep learning 
method for detecting, recognizing, and counting multiple 
wheat spikes. For preparing the dataset, images were captured 
with a high-resolution camera and later cropped for detecting 
regions of interest. This model ar- chitecture consists of two 
feature subnetworks, the Local Patch extraction Network 
(LPNet) and the Global Mask refinement Network (GMRNet). 
The proposed model achieved an average precision, accuracy, 
and robustness of 99%, 95%, and 97% for counting spikes. 
In a dataset with illuminated images, the model achieved 
sufficient robustness, with no significant drop in segmentation 
performance. But performance here drops when a spike 
overlaps with another in the image, then the model counts 
two or more spikes as one [4].

Zhao et al. [8] proposed a more advanced and de- veloped 
method, improved YOLOv5 to detect spikes precisely in 
UAV images, and overcome false spike detection caused 
by occlusion conditions. High-quality in-field images were 
taken by a UAV equipped with a high-quality RGBD 
camera for the dataset. After providing an input image to 
the network, the backbone module extracts its features, the 
neck module generates a multi-scale, multi-channel feature 
pyramid based on Path Aggregation Network (PANet), 
and finally the head module outputs detection boxes with a 
confidence score indicating the category and coordinates of 
wheat spikes contained. The average accuracy of wheat spike 
detection in UAV images is 94.1%, which is 10.8% higher 
than the standard YOLOv5. Yet the spikes here are detected 
as points instead of bounding boxes so the height of the 
spike cannot be described from the detection method. This 
same deficiency was found in another Convolutional Neural 
Network (CNN) based model, WheatNet, pro- posed by 
Khaki et al. [9]. For counting wheat heads this method is 
accurate and robust for different conditions in the field. 
Images were collected from 10 different locations around 
with a high spectrum RGB camera. The proposed model 
uses a truncated MobileNetV2 model as a lightweight 
backbone for extracting features with various scales which 
are then merged to counter varia- tions in image scale. This 
model uses significantly fewer parameters and so runs very 

fast. The characteristics make the model lightweight enough 
to be used in in- field, mobile platforms.

Wen et al. [7] developed a technique based on Spik- 
eRetinaNet in order to detect and count small dense objects 
in complex scenes. SpikeRetinaNet is an opti- mized version 
of the RetinaNet model and is consisting of three crucial 
steps: the usage of BiFPN for more effective integration 
of multiscale features, DSA block for improved network 
refinement, and the application of Soft-NMS to solve the 
occlusion problem. The au- thors trained and tested their 
method using the Global Wheat Head Detection (GWHD) 
dataset augmented with Wheat-Wheatgrass Spike Detection 
(WSD) images. The model achieved wheat spike mAP and 
count detection rates of 92.62% and 92.88%, respectively.

The field of phenotyping is predominantly assigned with 
analyzing the spike dataset for detection and recog- nition of 
wheat spikes. Increasingly, plant biologists and breeders rely 
on high-throughput phenotyping methods to evaluate various 
plant traits, which are then used to examine the plant’s 
response to various external condi- tions and treatments in 
an effort to improve grain yield. In this research, to gather 
a diverse dataset containing images of wheat spikes in 
real-world field conditions, we applied the SPIKE dataset 
[3] which is accurate, and complete to develop a standard 
model for this approach. Since most existing methods are 
struggling with detecting partially occluded or visible parts 
of a dense region, our main contribution to this research is 
to develop an improved end-to-end deep learning method 
to get better accuracy detection. We applied the Cascade 
R-CNN architecture [10] for the detection by fine-tuning 
the hyper parameters and customizing the model to suit the 
need of our spike detection task. In doing so, we observed 
an improvement over existing state-of-the-art methods 
developed by Hasan et al. [3] and Wen et al. [7]; a 2.9% 
and and 11.2% increase in Mean Average Precision (mAP), 
8% and 13% increase in Recall, 9% and 15% increase in 
Accuracy metric as well as 5% and 9% increase in Average 
F1 score for detection count. Moreover, the experimental 
results demonstrate its significance in various analysis tasks 
such as yield estimation, plant growth measure, genotype 
traits, etc.

2. Methodology

2.1 Proposed Method

Our goal in this work is to develop an improved method for 
detecting and counting wheat spikes from in-field land-based 
imaging. To achieve this, we need a fast and accurate system 
that can detect spikes in challenging field conditions as well 
as test the robustness of the model in terms of detecting 
those spikes. “Fig. 2 shows a workflow diagram for such 
a system.”
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Fig.2: General work-flow diagram of our proposed system.

2.2.1 Experimental Setup

In this paper, we adopted the SPIKE dataset developed by 
Hasan et al. [3] The SPIKE dataset was obtained by 
capturing images of wheat fields of 90 plots, 18 rows and 5 
columns using a mobile land-based imag- ing platform over 
four months, from July 21, 2017 – November 22, 2017. The 
plots were planted with 10 spring wheat (Triticum aestivum 
L.) varieties (Drysdale, Excalibur, Gladius, Gregory, Kukri, 
Mace, Magenta, RAC875, Scout, Yitpi). This makes the 
dataset more robust in detecting spikes of different wheat 
varieties i.e., spikes of different shapes and sizes.

The mobile platform to capture images was a steel- framed, 
four-wheeled wagon with a central overhead rail for 
mounting imaging sensors. An 18.1-megapixel Canon EOS 
60D digital camera was mounted on the rail to capture 
images of the plots from a slight oblique view (55 degrees 
from the horizontal overhead rail). The images captured had 
a resolution of 5184 × 3456 pixels or an image resolution of 
0.4mm per pixel.

2.2 The SPIKE Dataset

The SPIKE dataset contains, in total, 335 images of ten 
wheat varieties at three different growth stages. Each 
image is expertly annotated to denote the bounding boxes 
of wheat spikes resulting in a total of approximately 25,000 
annotations. The three different growth stages correspond to 
three different situations for spike and canopy color shown 
in Fig. 3:

•	 Green Spike Green Canopy (GSGC)

•	 Green Spike Yellow Canopy (GSYC)

•	 Yellow Spike Yellow Canopy (YSYC)

Fig. 3: Examples of training images captured at three different 
growth stages.

For our purpose in this paper, we took exactly 
320 images with proper annotation from the SPIKE dataset 
and split them into train, validation and test sets randomly. 
We ensured proper distribution of different types of images 
in train, validation and test sets to eliminate biases while 
testing our model.

Table 1: Number of images from each growth stage for 
train, validation and test set

IMAGES GSYC GSGC YSYC TOTAL

TRAIN 222 34 34 290

VALIDATION 9 3 3 15

TEST 9 3 3 15

TOTAL 240 40 40 320

Each image in dataset has dimension of 2500x1500 pixels 
and our dataset contains over 22,000 annotations of wheat 
spikes. For a standard evaluation and testing purpose, we 
converted the original annotation format of the SPIKE 
dataset to COCO format [11] used as a standard format 
to evaluate object detection models. Here, each bounding 
box annotation is a list of coordinates denoting [x, y, width, 
height]. Fig. 4 shows the bounding box annotations of a 
training image and as it can be seen, the wheat spikes 
have been properly annotated with tight bounding box 
regions.

Fig. 4: Example of bounding box annotations of a training image.

2.2.2 Experimental Model Setup

In this paper, as a method for detecting and counting wheat 
spikes from field images, we applied the Cas- cade R-CNN 
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architecture [10] and fine-tuned the hyper- parameters 
to obtain an optimized model applicable to our problem 
domain. Cascade R-CNN is a multi-stage extension of the 
R-CNN architecture [6], where detectors further down the 
cascade architecture are sequentially more discriminating 
against detections that are close to false positives. These 
stages of the R-CNN architecture are trained successively, 
with the previous step’s output used to train the subsequent 
stage.

2.2.2.1 Data Augmentation

Before using it for the training of our model, we augmented 
the dataset with some standard data aug- mentation 
techniques to avoid overfitting the model. These data 
augmentation techniques include Resizing (to 1333x800 
size), Random Flipping (with 0.5 probability being vertical 
or horizontal), and padding (upsampled to a multiple of 32). 
The augmentations help create virtual copies of the wheat 
spike images to improve model generalization capability.

2.2.2.2 Model Architecture

Essentially, Cascade R-CNN is an extension of the two- 
stage architecture of the Faster R-CNN [12, 13], shown 
in Fig. 5. The first stage, a proposal sub-network (“H0”), 
produces preliminary detection hypotheses, known as object 
proposals, after being applied to the entire input image. For 
our purpose, this is done using a Region Pro- posal Network 
(RPN) [12]. The second stage, a region of interest detection 
sub-network (“H1”), processes these hypotheses to detect 
regions that might contain objects. This stage is denoted 
as the detection head. The final stage assigns a final 
classification score (“C”) and a bounding box (“B”) to each 
detection. In Fig. 5, for both of the architectures, ”I” stands 
for input image, ”conv” stands for backbone convolutions, 
”pool” stands for region-wise feature extractor, ”H” stands 
for network head, ”B” stands for bounding box regressor, and 
”C” stands for bounding box classifier. In both architectures, 
”B0” is the proposal bboxes.

Fig. 5: Abstract representation of the architectures of Faster 
R-CNN and Cascade R-CNN methods [10].

For the backbone architecture of our network, we used a 
ResNet-50 [14] model pre-trained on ImageNet dataset to 
extract features from our input image. In addition to using a 
Feature Pyramid Network (FPN) [13] as the sub- network to 
arrange the features into a multi-scale, multi- channel feature 

pyramid, we implemented the Balanced Feature Pyramid 
(BFP) proposed by Pang et al. [15].

Fig. 6: Architecture representation of Feature Pyramid Network 
(FPN) [13].

In Fig. 6, the top diagram shows a top-down and skip 
connection architecture, where a single high-level feature map 
with fine resolution is created to make predictions, whereas 
the bottom diagram represents FPN with similar architecture, 
where predictions are made separately on feature maps of 
all levels.

Fig. 7: Pipeline and heat map visualization of balanced feature 
pyramid [15].

For the classification network, the proposed cascaded 
architecture is used where for bbox regression and classi- 
fication loss, SmoothL1Loss and CrossEntropyLoss were 
used respectively in each stage.

SmoothL1Loss (Huber loss),

𝑙𝑙𝑛𝑛 = �0.5(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 )2 , if|𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 | < 1
|𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 | − 0.5 , otherwise                  (1)

Cross Entropy Loss,

log_loss = 
1
𝑁𝑁

� −(𝑦𝑦𝑖𝑖 ∗  𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖 ) ∗  𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑝𝑝𝑖𝑖 ))
𝑁𝑁

𝑖𝑖=1

 	(2)



26 M. A. Batin, Muhaiminul Islam, Md Mehedi Hasan and Stanley J. Miklavcic

2.2.2.3 Model Configuration

Taking in an input image, our model extracted and arranged 
features using FPN and BFP sub-networks into a multi-scale 
pyramid with 5 different scales, each con- taining 256 feature 
channels. The features were extracted using a pretrained 
ResNet-50 model. These features were then fed into the 
RPN sub-network with an Anchor- Generator. An anchor is 
a bounding box generated at each point of the feature map 
with a specific scale and aspect ratio. At each point, 3 anchors 
were generated. These ‘anchors’ or object proposals are 
then processed in the region-of-interest sub-network. Here 
we used CascadeRoIHead with 3 stages. Each stage takes 
the output from the previous stage as its input for bounding 
box regression to localize the wheat spikes and assign a 
classification score to correctly classify each bbox as either 
spike or background.

At the training stage, the region proposal network applies 
Non-Maximum Suppression (NMS) for every generated 
anchors with an IoU threshold of 0.7 and max- imum number 
of proposals set to 1000 per image. Then each of the detection 
head stages samples and assigns a prediction score to all the 
proposed regions. This is done by setting an IoU threshold 
to classify between a positive sample (spike) and a negative 
sample (background). Unlike Faster R-CNN where a 
single detector does this regression and classification task, 
Cascade R-CNN employs multiple cascaded detectors 
with increasing IoU thresholds for better detection 
and localization of the wheat spikes. For our purpose, we 
employed three cascaded detectors with IoU thresholds 
of 0.5, 0.6, and 0.7 respectively. All the stages predict a 
confidence score for each of the detected bounding boxes, 
with Stage 3 prediction score being the final output score 
for each detection. For testing, the R-CNN network samples 
out detections with low confidence scores and use NMS to 
output detected bounding boxes closest to ground truth. In 
our case, the score threshold was set to 0.5 and IoU threshold 
to 0.5 for best performance.

2.2.2.4 Hyperparameters

In this paper, we used a certain configuration for our model 
hyperparameters after several empirical tests. Here for the 
optimization of model parameters, the Stochastic Gradient 
Descent (SGD) algorithm was used. Because training 
might be unstable at initial iterations, a warmup method 
for learning rate was used where the initial learning rate = lr 
* warmup ratio, which in our case is 1e-4. The learning rate 
was decreased by a factor of 10 after epochs 167 and 229. 
Also, we grouped the training images into a batch size of 2 
images per iteration during training.

Table 2: Values of the learning hyper-parameters

2.2.2.5 Implementation
To easily implement the model architecture of our choice as 
well as efficiently process dataset augmentation, training, and 
testing pipelines, we have opted to use the MMDetection 
codebase developed by Chen et al. [16] MMDetection 
is open-source object detection and instance segmentation 
codebase developed with PyTorch. The main advantage of 
this codebase is its ease of use and modular nature when it 
comes to model representa- tion. Also, the codebase contains 
several popular single- stage, two-stage, and multi-stage 
object detection and instance segmentation methods, which 
is helpful for con- veniently implementing our choice of 
model architecture.

3. Results and discussions

3.1 Detection and Count Results

To test the performance of our trained model, we utilized 
Mean Average Precision (mAP), the standard evaluation 
metric for COCO-formatted datasets. The mean average 
Precision, which quantifies the method’s precision at 
various recall levels, can be represented as follows:

𝑚𝑚𝑚𝑚𝑚𝑚 =  1
101

∑ 𝑝𝑝(𝑟𝑟𝑖𝑖 )𝑟𝑟𝑖𝑖 :𝑟𝑟𝑖𝑖≥𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑖𝑖∈{0,0.01…,1}                              (3)
  

Fig. 8: Training loss of the method over 250 epochs

In other words, it is the average precision of 101 equally 
spaced Recall levels [0.1, 0.01,..., 1]. p(ri) represents the 
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Precision at Recall ri that was measured. The Precision at 
each Recall level ri is interpolated using the highest epochs 
Precision for which the corresponding Recall exceeds r. 

After training for 250 epochs, we logged the training 
loss of our model. As it can be seen from the graph 
in Fig. 8, after approximately 30k iterations or 200 
epochs of training, the training loss reaches a constant value 
which means the benefit of further training is negligible. We 
also evaluated the trained model using the  Cascade R-CNN 
method on each test image. The model performed sufficiently 
well to detect all the wheat spikes.  For evaluation, the 
following metrics were used for each image:

•	 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇  +   𝐹𝐹𝐹𝐹)    measures how 
many of the detections made are actual spikes.

•	 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇  +   𝐹𝐹𝐹𝐹)  measures how many 
actual spikes in the image are successfully detected.

•	 𝐹𝐹1  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = (2  ∗   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ∗   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/
(  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  +   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

  	
“is the weighted mean of      

precision and recall, it measures the model’s robustness.”

Here, true positive (TP)—when the model correctly 
detects a region as a spike, false positive (FP)—when 
the model incorrectly detects a background region as 
a spike or detects the same spike as multiple ones; and 
false negative (FN) —when the model incorrectly classifies 
an actual spike as background. In contrast, true negative 
(TN)—correctly classifying background which is always 
considered ’zero’ and does not contribute to the model’s 
performance evaluation.

Table 3 shows the counting result of the detected spikes 
by our proposed method for each test image. As it can 
be seen, our method achieved an average precision of 98% 
across all test images which indicates the model’s ability to 
detect regions that contain wheat spikes. An average recall 
of 85% means that the model can detect most of the spikes 
present in the images. Our method also achieved a high 
average F1 score of 91% showing that the model is robust 
enough to detect spikes in different challenging conditions.

Table 3: Count and evaluation of spike detection using the Cascade R-CNN model tested on SPIKE test set (15 images)

Image GT Detected TP FP FN Precision Recall Accuracy F1-score

GSGC test2.jpg 72 68 67 1 5 0.99 0.93 92% 0.96

GSGC test4.jpg 76 69 68 1 8 0.99 0.89 88% 0.94

GSGC test5.jpg 62 56 56 0 6 1 0.9 90% 0.95

GSYC test199.jpg 78 70 68 2 10 0.97 0.87 85% 0.92

GSYC test220.jpg 83 73 70 3 13 0.96 0.84 81% 0.9

GSYC test242.jpg 78 68 64 4 14 0.94 0.82 78% 0.88

GSYC test320.jpg 84 71 69 2 15 0.97 0.82 80% 0.89

GSYC test383.jpg 77 67 65 2 12 0.97 0.84 82% 0.9

GSYC test417.jpg 88 74 73 1 15 0.99 0.83 82% 0.9

GSYC test421.jpg 79 72 72 0 7 1 0.91 91% 0.95

GSYC test437.jpg 72 65 64 1 8 0.98 0.89 88% 0.93

GSYC test480.jpg 91 77 74 3 17 0.96 0.81 79% 0.88

YSYC test1.jpg 85 72 69 3 16 0.96 0.81 78% 0.88

YSYC test3.jpg 71 59 59 0 12 1 0.83 83% 0.91

YSYC test6.jpg 63 53 52 1 11 0.98 0.83 81% 0.9

Total 1159 1014 990 24 169 - - - -

Average - - - - - 0.98 0.85 84% 0.91

Standard dev. 8.36 6.79 6.24 1.24 3.81 0.02 0.04 0.05 0.03
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Fig. 9. Ground truth versus Detection count plot.

Fig. 9 shows the relationship between the ground truth 
count of spikes and the detected number of spikes by 
our method, for each of the 15 test images.In the graph, the 
horizontal axis represents the number of detected spikes 
by the proposed method and the vertical axis represents the 
number of manually counted spikes in the test images. Our 
proposed method yields a close- to-perfect estimate of the 
number of spikes per image (the slope of the line is 1.1533, 
and the intercept is -0.6995). The model yields a high R2 
value of 0.88, demonstrating a strong linear relationship 
between the manually counted ground truth and the detection 
outputs of our method.

In Fig. 10, it can be seen that our method can even 
detect spikes that are partially visible at the edges. But the 
method struggles to detect partially occluded spikes and 
achieved poor detection performance for spikes that are 
crowded together.

3.2 Comparison with Existing Method
We also compared our proposed method against a state-of-
the-art method developed by Hasan et al. [3], which uses 
a Faster R-CNN architecture for their model, as well as 
another state-of-the-art method developed by Wen et al. [7] 
that utilised a model based on the RetinaNet architecture, 
and logged the loss metric and detection performance 
for comparison of these models. In Fig. 11, the blue line 
represents the loss of the proposed method and the red and 
magenta lines represent the training losses of the existing 
methods.

Fig. 11. Comparison of training loss over 250 epochs.

 

Fig. 10. Examples of the generated output image from a test image.

The X-axis indicates the number of training iterations and 
the Y-axis indicates training loss. As it can be seen from 
the graph, our proposed method is better at optimizing 
the loss function and resulted in a more optimized training 
loss value. Better optimization of the loss metric can lead to 
better detection performance and precision which can be 
seen in the graphs included in the following figures. 

In Fig. 12, the blue line represents the mAP50 of the 
proposed method and the red and magenta lines represent 
the mAP50 of the existing methods. The X-axis indicates 
a number of training iterations and the Y-axis indicate 
mAP50 of the validation set. Here mAP50 refers to mAP 
calculated at the IoU threshold of 0.5. The graph indicates 
the improvement in the precision of our method. After just 
69 epochs (10k iterations) of training, the proposed method 
surpassed the Faster R-CNN’s [3] detection performance in 
terms of mAP at IOU threshold of 0.5.

Fig. 12. Comparison of mAP50 of the validation set over 250 epochs.
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Fig. 13. Comparison of mAP of the validation set over 250 epochs.

In Fig. 13, the blue line represents the mAP of the 
proposed method and the red and magenta lines represent 
the mAP of the existing methods. The X-axis indicates a 
number of training iterations and the Y-axis indicate the 
mAP of the   validation set.   Here mAP is calculated over 
10 levels of IoU threshold, [0.5: 0.05: 0.9]. Our proposed 
method has better localization performance than the existing 
method which contributes to higher mAP shown in the graph 
in Fig. 13. Similar to the graph in Fig. 12, it’s also evident 
that the proposed approach started scoring better mAP value 
for the validation set after just a few epochs and ultimately 
resulted in a better score after 250 epochs of training.

Table 4 shows the exact values of the evaluation metrics 
after taking the best-performing model and testing it on the 
test set containing 15 images. Our proposed method achieved 
a higher mAP50, 2.9% better than Faster R-CNN [3] and 
11.7% better than RetinaNet [7]. It also resulted in 1.1% and 
4.14% better Mean Average F1 scores which is calculated 
using the following equation,

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐹𝐹1  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  =
2  ∗   𝑚𝑚𝑚𝑚𝑚𝑚  ∗   𝐴𝐴𝐴𝐴@100

  𝑚𝑚𝑚𝑚𝑚𝑚  +   𝐴𝐴𝐴𝐴@100
 

We also manually counted the detection results to compare 
total detection, TP, FP, and FN values of the experimented 
methods as well as calculate average precision, recall,

and accuracy metrics. As can be seen from Table V, our 
method can detect significantly more spikes present in test 
images. Also, a lower FN value means it can detect spikes 
that are otherwise difficult to detect for the existing method.

Our proposed method, utilizing the Cascade R-CNN 
architecture for wheat spike detection and counting, offers a 
significant improvement over some existing state-of-the-art 
methods such as the ones which employ the use of Faster 
R-CNN [3] and RetinaNet [7] architectures. As it can be seen 
from the results of our conducted experiments, our method 
scores an mAP of 0.672, which is 2.9% and 11.2% better 
than the existing standard methods developed by Hasan et 
al.[3] and Wen et al. [7], respectively. Also, when it comes 
to average detection accuracy, our method scores 84% (9% 
and 15% improvement over Faster R-CNN and RetinaNet, 
respectively) as well as a significant improvement in 
the average recall metric, 85% versus 77% and 72% 
compared to Faster R-CNN and RetinaNet, respectively. It 
also sees a 1% and 3% improvement in the average precision 
metric.

Analyzing the output images of our method, it can be 
observed that our proposed method offers an im- provement 
over the existing methods when it comes to detecting spikes 
that are partially visible in the images, especially at the 
edges. The use of multi-stage cascaded R-CNN architecture 
that utilizes a sequence of detectors trained with increasing 
IOU thresholds (0.5, 0.6 and 0.7 in our case) attributes to 
the superior performance of our proposed method among 
all the compared methods. Furthermore, careful fine-tuning 
of the model’s hyperpa- rameters using the validation set 
contributed to the im- proved detection rate. However, it 
requires an exploration of other components in the network 
architecture, namelythe loss function, the region proposal 
network (RPN), and the non-maximum suppression 
(NMS) algorithm, to improve detection performance 
when it comes to detecting spikes that are partially 
occluded or crowded together.

Table 4: Comparison of evaluation metrics of experimented methods

Method mAP
[0.5: 0.05: 0.9]

mAP50 AR@100
[0.5: 0.05: 0.9]

Mean Average
F1 score (%)

RetinaNet [7] 0.219 0.56 0.306 25.53
Faster-RCNN [3] 0.249 0.643 0.335 28.57
Proposed Method 0.257 0.672 0.351 29.67

Table 5: Comparison of counting performance of experimented methods

Method
Total Average

GT Detected TP FP FN Precision Recall Accuracy F1 score
RetinaNet [7] 1159 865 825 40 339 0.95 0.72 69% 0.82

Faster R-CNN [3] 1159 911 886 25 273 0.97 0.77 75% 0.86
Proposed Method 1159 1014 990 24 169 0.98 0.85 84% 0.91
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4. Conclusion

In this paper, we have proposed an improved method for 
detecting wheat spikes from land-based field images. Our 
proposed method uses the Cascade R-CNN architecture for 
detecting spikes from images that are captured in real-world 
field conditions. After many iterations of empirical testing, 
we fine-tuned our model’s architecture and optimized the 
hyper-parameters to suit the need for our spike detection task. 
Thus, it offers a significant improvement over other existing 
standard approaches such as the one developed by Hasan et al 
[3] and Wen et al [7]. This allows us to more accurately detect 
and count spikes in challenging photographic scenarios such 
as partial occlusion, visibility, and crowded regions. Because 
our method makes use of a dataset derived from real-world 
land-based field imaging that contains complex scenarios, it 
can be used to detect spikes in other real-world scenarios 
as well. Furthermore, the improved performance of our 
method could be applied to applications that use different 
imaging systems, such as UAVs and satellites. Moreover, 
accurate detection and count of various phenotyping traits 
like wheat spike and spikelet, paddy and sorghum head is 
necessary as it helps smart farming and agricultural advisory 
applications to make more accurate decisions regarding crop 
breeding and management. Our research is a step towards 
betterment in this field of e-agriculture. Further opportunity 
for research includes but are not limited to training and 
testing the proposed method on various other datasets for 
wheat spike detection and conducting an ablation study to 
improve the method’s accuracy and performance.
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