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Abstract 

Researchers are interested in the (1+1)-dimensional Camassa-Holm and Landau-Ginzburg-Higgs equations as they allow 

for the study of unidirectional wave propagation in shallow waters with a flat seabed, as well as nonlinear media exhibiting 

dispersion systems and superconductivity. This work has effectively developed exact wave solutions to the stated models, 

which may have significant consequences for characterising the nonlinear dynamical behaviour related to the phenomena. 

The extended       -expansion technique is employed to procure a diverse array of progressive wave solutions 

characterized by hyperbolic, trigonometric, and rational functions. The solutions are shown as 3D profiles with a variety of 

shapes, including kink, singular kink, periodic, singular periodic, etc. The physical significance of the solutions is discussed 

by these plots, and the approach used in this study is considered efficient and capable of finding analytical solutions for the 

nonlinear models. 

Keywords: Extended       -expansion method; Camassa-Holm equation; Landau-Ginzburg-Higgs equation; Traveling 

wave solutions; Soliton. 

I. Introduction 

Nonlinear evolution equations (NLEEs) are frequently 

employed to portray intricate physical phenomena. 

Nonetheless, determining closed-form solutions of traveling 

waves for these models, which are essential for nonlinear 

science and engineering, presents a significant impediment 

to their utilization. The proliferation of scholars 

investigating analytical wave solutions of NLEEs has 

generated significant interest in this area of study. In recent 

times, several efficient and direct techniques have emerged, 

enabling researchers to achieve a deeper perception of the 

underlying mechanisms of these natural phenomena. Some 

of the presently employed methodologies include: the exp-

function process
1
, nonlinear transformation method

2
, sine-

cosine method
3
, modified simple equation technique

4
, 

Hirota's bilinear method
5
, variational iteration method

6
, 

He’s homotopy perturbation technique
7
,        -expansion 

technique and its several variations
8-10

, Adomian 

decomposition method
11

, test function method
12

, tanh-

function procedure
13

, the improved tanh process
14

, 

generalized Kudryashov process
15

 and others. Different 

equations have been studied using a variety of techniques. 

For the simplified form of modified Camassa-Holm (MCH) 

equation, Islam et al.
16

 applied the new auxiliary equation 

approach, Najafi et al.
17

 exploited the semi-inverse 

scattering method, and Alam and Akbar
18

 investigated the 

same equation applying the generalized        -expansion 

technique. Also, Liu et al.
19

 utilized the        -expansion 

process to analyze the specified model. Similarly, for the 

nonlinear Landau-Ginzburg-Higgs (LGH) equation, Kundu 

et al.
20

 applied the Sine-Gordon expansion procedure to 

obtain exact solutions, while Barman et al.
21,22

 examined 

the same equation using the Kudryashov technique and the 

extended tanh-function process to derive exact wave results. 

Additionally, Ahmad et al.
23

 applied the power index 

approach to study this model. 

As far as the authors' knowledge goes, the extended     

   -expansion technique
12

 has not been used in the analysis 

of the (1+1)-dimensional simplified MCH model and LGH 

equation. The aim of this paper is to employ the extended 

       -expansion technique to obtain analytical wave 

solutions of the previously mentioned couple of equations. 

The paper’s structure is as follows: Section II expounds on 

the methodology, while Section III employs the extended 

       -expansion technique to probe the solutions. Section 

IV presents the comparison and validations of the obtained 

results. Section V deliberates on the findings, accompanied 

by graphical depictions of the solutions. At last, Section VI 

furnishes concluding remarks.  

II. Elucidation of the Technique 

Consider an evolution equation involving spatiotemporal 

variables, denoted as the space variable     and time 

variable    , and expressed as: 

                                 (1) 

Here,          is an unidentified wave function, and   

is a polynomial that includes time and space derivatives of 

      . To solve equation (1), we will employ the extended 
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      -expansion approach. The steps involved in this 

approach are as follows: 

Step 1: The wave coordinate   serves to link the space-time 

coordinates   and  , as shown below: 

                  ,        (2) 

where   is the wave displacement rate. The equation (1) can 

be transformed into an equation for   by using the wave 

variable specified in (2). 

                                    (3) 

wherein   indicates a polynomial of   as well as ordinary 

differential coefficients of its ( ) with respect to  , 

exhibiting varying orders, and the superscripts on   

represent the orders of the differential coefficients.  

Step 2: We may integrate equation (3) one or multiple 

times, depending on the circumstance. To simplify the 

search for soliton solutions, we set the integral constants to 

0. 

Step 3: As per the extended       -expansion technique, 

the solution of equation (3) is taken as follows: 

            ∑ [    
           

      ] 
    (4) 

where the constants   ,   ,                 will be 

determined at a later stage and        satisfies the 

following ODE: 

                 (5) 

The above equation has the following solutions: 
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 (6) 

 

wherein   and   are any constants. 

Step 4: To find the natural number   in equation (4), we 

must carefully examine the homogeneous balance that 

exists between the highest order derivative term and the 

non-linear term of highest order in equation (3). 

Step 5: By incorporating equations (4) and (5) into 

equation (3) and utilizing the value of   found in Step 4, we 

can derive an algebraic expression for       . The process 

of equating the coefficient of every term to zero will yield a 

class of algebraic equations that may be unravelled for the 

estimations of   ,   ,   ,   and any other necessary 

constraints. 

Step 6: By plugging the solutions provided in equation (6) 

and the estimations of   ,   ,   , and   into solution (4), we 

can derive comprehensive analytical solutions for equation 

(1). 

III. Implementations of the Technique 

Here, we implement the extended       -expansion 

technique to develop the further fresh exact wave solutions 

for the (1+1)-dimensional simplified MCH model and LGH 

equation. 

Modified Camassa-Holm equation 

We contemplate the following simplified MCH model
16-19

: 

                                                         (7) 

This equation, which concerns the dispersion of water 

waves and has been widely studied, is particularly 

important in its field. It was originally developed to explain 

how shallow water waves propagate in a single direction 

over flat terrain. The parameter  , which belongs to the set 

of real numbers, is linked to the critical speed at which 

shallow water waves can travel, while       , represented 

in non-dimensional variables, refers to the water's free 

surface. By using a traveling wave transformation 
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           , where       , the following nonlinear 

ODE is created from equation (7). 

                           (8) 

Equation (8) yields    , if we apply the principle of 

homogeneous balance between the highest order nonlinear 

term       and the highest order derivative      . Hence, 

the form of the solution (4) is as follows:  

                
         

       (9)                                                   

By inserting equations (9) and (5) into (8) and gathering the 

coefficients for        and          (where    0, 1, 2, 3), 

and setting them to 0, a collection of algebraic equations is 

obtained. Unravelling this group of equations by means of 

the software MAPLE produces the subsequent set of 

solutions: 

Set-1: 

        √
  

          
 ,      √

  

          
,  

        ,    
  

       
 (10) 

where  ,  ,   and   are free constants. 

Set-2: 

        √
  

          
 ,     ,  

         √
  

          
 ,    

  

       
 (11) 

where  ,  ,   and   are uninformed constants. 

Substituting the estimations of the constants from (10) and 

(11) into the equation (9), we get 

           √
  

          
(         ) (12) 

           √
  

          
               (13)                                                     

where     
  

       
 .  

The traveling wave solutions to the equation (7) are 

obtained from the solution (12) by putting  

the results of        given in (6) as below: 

When        , we get the hyperbolic solution: 

                                                      √
         

          
  

     (
√     

 
 )      (

√     

 
 )

     (
√     

 
 )      (

√     

 
 )

 (14) 

where     
  

       
 . 

When        , we have the trigonometric solution:  
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where     
  

       
 . 

When        , we attain the rational solution: 
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 (16) 

where        . 

Similarly, the wave solutions of the equation (7) are 

obtained from the solution (13) by putting the results of 

       given in (6) as bellow: 

When        , we get the hyperbolic solution:  
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where  ,  ,  ,  ,   and   are free constants and the value of   is given by     
  

       
 . 
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When        , we have the trigonometric solution:            
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where     
  

       
 . 

When        , we achieve the rational solution: 
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) (19) 

where        .  

                                                   

Landau-Ginzburg-Higgs equation 

Th LGH model equation is taken as follows
20-23

: 

                        (20) 

The electro-static potential, represented by       , is 

influenced by both the temporal and spatial coordinates   

and   respectively, with m and n serving as real constants 

that are not equal to zero. By using a traveling wave 

transformation            , where       , equation 

(20) is distorted into the subsequent nonlinear ODE. 

                           (21)                                                          

Equation (21) yields    , if we adopt the principle of 

homogeneous balance between the highest order nonlinear 

term       and the highest order derivative      . Hence, 

the form of the solution (4) is as follows:  

                
         

        (22)                                                      

By inserting equations (22) and (5) into equation (21) and 

gathering the coefficients for        and          (where 

   0, 1, 2, 3), and setting them to 0, a group of algebraic 

equations is obtained. Unravelling this family of equations 

by means of the software MAPLE produces the subsequent 

set of solutions: 

Set-1: 

        
  

 √     
,     

  

 √     
,  

        ,    √
         

     
 (23) 

where  ,  , and   are random constants. 

Set-2: 

        
  

 √     
,     ,     

   

 √     
,  

       √
         

     
 (24) 

where  ,  , and   are any constants. 

Placing the values of the constants from (23) and (24) into 

the result (22), we get 

           
 

 √     
(         ) (25)                                                                         

           
 

 √     
               (26)                                                                 

where     √
         

     
 . 

The progressive wave solutions of the LGH model are 

attained from the solution (25) by putting the results of 

       given in (6) as follows: 

When        , we get the hyperbolic solution: 
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where     √
         

     
 . 

When        , we have the trigonometric solution: 
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where     √
         

     
 . 

Likewise, the analytical wave solutions of the LGH model 

are achieved from the solution (26) by putting the results of 

       given in (6) as follows: 
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Fig. 1. Kink soliton of solution (14) for    ,    ,      , 

   ,     and      . 

 

Fig. 2. Periodic soliton of solution (15) for   ,    ,     , 

   ,     and    . 

When        , we get the hyperbolic solution: 
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where     √
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When        , we have the trigonometric solution: 
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where     √
         

     
 . 

IV. Comparison and Validations 

Comparison with Liu et al.
19

, and Barman et al.
22

 

In this subsection, we will discuss the comparison between 

the solutions obtained for the MCH equation and those 

presented by Liu et al.
19

. Furthermore, we will also examine 

the solutions obtained for the LGH equation and compare 

them with the findings presented by Barman et al.
22

 

With       -expansion method
19 

To align with the MCH equation, we initially set     and 

    in equations (7) and similarly in (10)-(19). Our 

solutions (14)-(16) encompass all the solutions presented in 

[19]. However, our solutions (17)-(19) introduce new 

solutions not found in
19

. 

With extended tanh-function technique
22

 

To obtain the same LGH equation, we initially set    , 

    and    in equation (20), as well as in equations  

 

Fig. 3. Singular kink soliton of solution (19) for    ,  

              ,   ,     , and    . 

(23)-(30). It becomes evident that the solution presented in 

(47) of reference [22] corresponds to a specific form of our 



12 Md. Sagib, Bishnu Pada Ghosh and Nepal Chandra Roy  

solution in (27), where    ,    ,   
√     

 
 and 

   . Notably, our solutions in (28)-(30) are not derived 

in
22

. 

Validations 

The correctness of the acquired results has been confirmed 

by substituting them into the original governing models. 

 

V. Results and Discussion  

By employing the extended        -expansion approach, 

the examination for the nonlinear (1+1)-dimensional 

simplified MCH model and LGH equation in the current 

investigation substantiates several innovative wave 

solutions while also rediscovering certain outcomes that 

have been previously reported. The solutions obtained 

possess free parameters, which could be valuable for 

revealing intricate physical phenomena or discovering 

novel phenomena. Graphical depictions of the solutions 

perform a vital task in depicting the inner workings of 

complex nonlinear occurrences. Figures 1-5 display visual 

representations of some of the acquired results for specific 

estimations of the subjective constants, using Maple, a 

commercially available software. These figures exhibit 

various three-dimensional profiles, including periodic, 

singular periodic kink, anti-kink, singular kink, etc. The 

solution (14) signifies the kink soliton for    ,   
 ,      ,    ,     and      within        
 , visible in Fig. 1. The result (15) characterizes the 

periodic soliton for    ,    ,     ,    ,     

and     in the range           , shown in Fig. 2. 

The result (19) yields singular kink for    ,    ,  
 ,     ,     within            and presented in 

Fig. 3. The result (27) expresses the anti-kink soliton for 

   ,    ,      ,     and     within the 

range            and displayed in Fig. 4. The result 

(30) represents singular periodic soliton for    ,    , 

   ,    ,       and     within the boundary 

          and exposed in Fig. 5. Kink solitons, anti-

kink solitons, singular kink solitons, periodic solitons, and 

singular periodic solitons find versatile applications in wave 

propagation in shallow waters with a flat seabed and 

nonlinear media exhibiting dispersion systems and 

superconductivity. Kink and anti-kink solitons describe 

localized disturbances and depressions, respectively, in 

shallow waters, modelling solitary waves and inverse 

solitary waves. Singular kink solitons capture extreme wave 

events and sharp gradients in wavefronts. Periodic solitons 

represent periodic wave patterns, while singular periodic 

solitons describe irregular periodic patterns, useful for 

understanding complex oceanic phenomena and flux 

pinning in superconducting materials. These solitons offer 

valuable insights into the dynamics of nonlinear systems 

and wave behaviours in diverse physical contexts. 

 

 

Fig. 4. Anti-kink soliton of solution (27) for    ,    , 

     ,     and    . 

 

Fig. 5. Singular periodic soliton attained from solution (30) 

          for    ,    ,    ,    ,       and    . 

 

VI. Conclusion 

This article successfully identified the travelling wave 

solutions of the (1+1)-dimensional Camassa-Holm and 

Landau-Ginzburg-Higgs equations in hyperbolic, 

trigonometric, and rational function forms, utilizing the 

extended       -expansion scheme. The results obtained 

are generally advanced, and the predetermined estimates of 

the related constraints provide various acknowledged 

soliton solutions, as well as several other solitons that could 

be advantageous to investigate in numerous possible uses in 

the fields of science and engineering. The extended       -
expansion approach demonstrates its directness, 

conciseness, and simplicity through software for symbolic 

calculation, such as Maple or Mathematica, making it a 

more accessible and effective tool compared to other 

methods in obtaining analytical wave solutions for 
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numerous nonlinear time dependent problems. To ensure 

the accuracy of the acquired solutions, the authors utilized 

Maple to cross-check the results with the original equation, 

further enhancing confidence in the findings. 
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