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SUMMARY

Multiple outcomes arise frequently in many different settings. Mixed effect models are
a useful tool for the analyses of such data. However, when outcomes are measured on
different scales, analyses based on any one scale are misleading. Often parameters of the
model are subject to known order restrictions. To incorporate heterogeneity across dif-
ferent outcomes, we propose a scaled linear mixed effect model. To estimate parameters,
we propose a maximum likelihood estimation procedure based on a restricted version of
the expectation-conditional maximization either algorithm. Constrained hypotheses testing
procedures are developed using likelihood ratio tests. The empirical significance levels and
powers are studied using simulations. This article shows that incorporating the restrictions
improves the mean squared errors of the estimates and the power of the tests. The method-
ology is applied on the London Junior School Project data incorporating known restrictions
of patterns of scores.

Keywords and phrases: Chi-bar square; Constrained estimation and testing; ECME algo-
rithms; Mixed effect models.

1 Introduction
The primary goal of educators is to equip students with the knowledge and skills necessary to think
critically, solve complex problems, and succeed in today’s rapidly changing world. Measurement
of such knowledge and skills is essential to tracking students’ development and assessing the ef-
fectiveness of educational policies and practices. Numerous authors have written on the merits of
measuring students’ abilities using their verbal/English and mathematics scores on standardized tests
(Jacob et al., 2016; Koretz 2008; Rubin et al., 2004). A higher verbal score indicates better fluency,
control of both receptive and productive languages, being able to follow analogies, comprehend
difficult written material and produce creative writing. A higher mathematics score indicates con-
ceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and productive
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disposition. It is also well-documented that gender differences exist on verbal and mathematics test
scores (Fryer et al., 2010; Lindberg et al., 2010; Cornwell et al., 2013; Quinn et al., 2015). Girls are
known to score higher on verbal tests while boys tend to score higher on mathematics tests. Despite
the fact that gender gaps in mathematics test scores have been found to narrow or even vanish over
recent decades (Hyde et al., 1990; Joensen et al., 2009) they remain present in large-scale assess-
ments such as the Programme for International Student Assessment (PISA) (Guiso et al., 2010).
More recently, Balart and Oosterveen (2019) examined the hypothesis that females show more sus-
tained overall performance during test-taking than males and investigated its potential implications
for the gender gaps in test scores.

Many studies have found a strong association between the economic outcomes of nations and
students’ performance on international cognitive tests such as the PISA, Trends in International
Mathematics and Science Study (TIMSS) or Progress in International Reading Literacy Study (PIRLS)
(see, for example, Hanushek and Kimko, 2000; Hanushek and Woessmann, 2008; Hanushek and
Woessmann, 2012). This association may be interpreted as evidence for cognitive skills being an
important determinant of social economic growth among perhaps many other noncognitive skills
(Wechsler, 1940). Duckworth, et al. (2011) found that under low-stakes testing conditions, such as
in the international cognitive tests, some individuals try harder than others. Moreover, scores of low
performers can be substantially improved by offering a reward (e.g. Borghans et al., 2008; Gneezy
and Rustichini, 2000; Segal 2012). The website of Educational Opportunity Project at edopportu-
nity.org lists many publications connecting educational opportunities and performances of students.
All these indicate that students’ scores improve with better economic conditions. The better a stu-
dent is prepared for learning, the more successful he or she is likely to be during the school career.
So it is reasonable (Kitsantas, et al., 2008) to assume that students with higher scores on school
admission tests are better prepared and later on will generally perform superior on any test that they
study for, including, English and mathematics tests. A similar argument is made by Allensworth
and Clark (2020) to postulate that better prepared students perform well in future studies.

Therefore, while analyzing the English and mathematics test scores, it is natural to assume that,
generally, females would score higher than males. Scores would improve with better household
socioeconomic conditions and would also improve with higher school admission test results. In
practice, these assumptions lead to imposing constraints on the parameters of the model. Constrained
environments arise naturally in many fields. Statistical inference under such constraints are more
efficient than their counterparts wherein such constrains are ignored (Silvapulle & Sen, 2005, and
other references therein). However, any additional restriction complicates the associated inferential
procedures. Here, we develop the methodology for constrained estimation and testing in longitudinal
mixed models.

We analyze the Junior School Project data (available as jsp in the R package faraway) that
were collected from primary schools in inner London on scores of English and mathematics tests
along with observations on variables including school level, gender, social class, etc. While dif-
ferent outcomes of English and mathematics test scores are affected by the same cognitive and
non-cognitive conditions of a student, their effect may be different. The English scores range from
0 to 100 while mathematics scores range from 0 to 40 (see Figure 1). The same data were analyzed
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by Mortimer et al. (1989) who studied the influences associated with the home backgrounds of stu-
dents and examined the effects of schools over and above the influence of home backgrounds. More
recently, de Luma (2021) studied effects of 3rd year versus 5th year after combining English and
mathematics scores. None of these authors considered heterogeneity of the English and mathematics
scores or restrictions on the regression parameters in their analyses.

When outcomes are measured on different scales, then analysis using one selected scale of mea-
surement is misleading. Lin et al. (2004) proposed a scaled linear mixed model (SLMM) for ana-
lyzing multiple continuous outcomes which considered the heterogeneity of variances over different
outcomes. Correlations among different outcomes within the same subject are accommodated using
random effects. Roy et al. (2003) proposed scaled marginal models for multiple outcomes to test
for a common exposure effect. Kennedy et al. (2017) proposed scaled effect measures (via potential
outcomes) that translate effects on multiple outcomes to a common scale.

There is an extensive literature on statistical inferences under inequality constraints (Silvapulle
and Sen, 2005, and references therein) verifying real gains in terms of improved power and/or a
better model fit over unrestricted. Singh and Wright (1990) considered order-restricted inference
on fixed effects in a two-factor mixed model. They presented an analogue to the usual F-test for
homogeneity and obtained several closed-form results. In the absence of any covariates, especially
continuous covariates, Mukerjee (1988) noted that the usual tests for order restrictions on the means
of independent normal populations can be extended to the case when normal populations are corre-
lated as in a repeated measurements design. Later Silvapulle (1997) generalized this methodology
to some unbalanced designs with incomplete data and showed that mixed linear models can be re-
duced to fixed-effect models where the usual one-sided tests for ordered hypothesis can be applied.
When this approach is applicable, the asymptotic null distribution of the test statistic is chi-bar-
squared with weights that do not depend on the unknown variance components. Davidov and Rosen
(2011) worked on constrained inference of the fixed effect parameter for linear mixed effects model
under homoscedastic errors. Farnan et al. (2014) considered constrained inference of the fixed ef-
fect parameter under heterogeneity of errors with independent random effects in model. They used
an empirical best linear unbiased predictor type residual based bootstrap methodology for deriving
critical values of the proposed test.

Constrained estimation using expectation maximization (EM)-type algorithms (Mclachlan and
Krishnan, 1997) has been used earlier. Fang and others (2006) proposed a modified EM algorithm
for deriving the maximum likelihood (ML) estimator in a multivariate random-effects model which
imposed constraints on the intercepts. Kim and Taylor (1995) considered a restricted EM algorithm
for ML estimation under equality constraints. Nettleton (1999) and Shi et al. (2005) considered
inequality constraints by performing a constrained maximization within the M-step, as was done by
Davidov and Rosen (2011).

For ML estimation of fixed effect parameters in SLMM, Lin et al (2004) proposed an algorithm
using existing software but it might produce negative estimates of the variances. Motivated by the
need to develop a methodology for incorporating the heterogeneity in data and known restrictions
on fixed parameters, we have proposed a variation of the SLMM model. We used the expectation-
conditional maximization either (ECME) algorithm (Liu and Rubin, 1994; Laird et al., 1987) to
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estimate its regression parameters with and without constraints. Tests of hypotheses regarding the
regression parameters of the SLMM has not been considered before. We proposed the likelihood
ratio (LR) tests for the constrained hypotheses. Their empirical significance levels and power are
studied using simulations. The rest of this paper is organized as follows. Section 2 introduces the
SLMM with linear inequality constraint. In Section 3, we propose the ECME algorithm for the
ML estimation of the model parameters. In Section 4, the LR tests are considered. In Section
5, simulation results are presented. Section 6 applies the proposed methods to the London Junior
School Project data set. We conclude, in Section 7, with a short discussion.

2 The Scaled Linear Mixed Model

Let yi = (yi1, . . . , yim)T denote the m measurements taken on ith individual, i = 1, . . . , n. Since
m outcomes are often measured on different scales, we propose a linear mixed model for outcomes
standardized by error standard deviations as follows

yij
σj

= xT
ijβ + zTijbi + εij , (2.1)

where j = 1, . . . ,m, i = 1, . . . , n, σj is the standard deviation of yij ; xij , zij are (p × 1 and
q × 1 respectively) known design vectors; εij ∼ N(0, 1) are independent random errors. The p× 1

regression coefficients β are unknown fixed effects, and the bi is a q× 1 vector of unknown subject-
specific random effects. This version of the SLMM model generalizes the standard linear mixed
model by introducing different variances across different outcomes.

The bi are distributed as Nq(0,D(θ)) and can be used to model correlations among different
outcomes of the same subject where θ is a g× 1 vector of variance components to be estimated. Let
Ψ = diag(σ2

1, . . . , σ
2
m). Let Xi = (xi1, . . . ,xim)T (of order m × p), Zi = (zi1, . . . ,zim)T (of

order m× q) and εi = (εi1, . . . , εim)T . Then model (??) can be expressed in matrix notation as

Ψ−1/2yi = Xiβ +Zibi + εi, (2.2)

where Ψ−1/2 = diag(σ−11 , . . . , σ−1m ).
The marginal distribution of yi isNm(Ψ1/2Xiβ,Ψ

1/2V i(θ)Ψ1/2), whereV i(θ) = ZiD(θ)ZT
i

+I . Let δ = (β,θ,σ2), where σ2 = (σ2
1, . . . , σ

2
m)T . The log-likelihood for the observed data is

given by

`0(δ) =

n∑
i=1

{
−m

2
ln 2π − 1

2
ln |Ψ| − 1

2
ln |V i(θ)|

−1

2

(
Ψ−1/2yi −Xiβ

)T
V i(θ)−1

(
Ψ−1/2yi −Xiβ

)}
. (2.3)

Note that due to the presence of the scale matrix Ψ in the marginal mean and marginal covariance
of yi, the standard linear mixed model methodology cannot be used to fit the scaled linear mixed
model. So a new estimation procedure is warranted.
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Often the fixed effects β may be subject to constraints which typically reflect prior information
about the value of the parameters. These are represented by Rβ ≥ 0 where R is a k × p matrix of
full row rank, 0 is a k × 1 vector of zeroes and the inequalities are coordinate wise.

3 Estimation
For estimation of parameters of (??), we propose an ECME algorithm which is a variant of the EM
algorithm in which the M-step is decomposed into a series of conditional maximization (CM) steps.

Let y = (yT
1 , . . . ,y

T
n )T be the observed data. Considering the random effects as the missing

data, we take b = (bT1 , . . . , b
T
n )T to be the unobserved data. Let c = (cT1 , . . . , c

T
n )T , where ci =

(yT
i , b

T
i )T denote the complete data. The log-likelihood for the complete data is given by (except

for trivial constants)

`c(δ) = −1

2

n∑
i=1

{
ln |Σi|+ (ci − µi)

TΣ−1i (ci − µi)
}

(3.1)

where

µi =

Ψ1/2Xiβ

0

 and Σi =

Ψ1/2V i(θ)Ψ1/2 Ψ1/2ZiD

DZT
i Ψ1/2 D

 .
For estimation of δ, we present an algorithm below. In Step 4 of the algorithm, to avoid negative

estimates of σ2, we use a Fisher approximation which is developed as follows. Let S(σ2) denote
the term obtained by differentiating `0(δ) in (??) with respect to σ2. For a given σ2

0, use Taylor
expansion of S(σ2) around σ2

0, which produces the approximation S(σ2) ≈ S(σ2
0) + I(σ2

0)(σ2 −
σ2

0) where I(σ2
0) is the Fisher information evaluated at σ2

0. Assuming that σ2 is the MLE, S(σ2) =

0, and after simplifying the Taylor expansion, σ2 ≈ σ2
0 + [I(σ2

0)]−1S(σ2
0). This equation is used in

(??) below to update σ2 starting from a known σ2
0. Expressions for I(σ2), S(σ2) are given in Lin

et al. (2000).
To estimate δ, the scheme is given below.

(1) Initialize θ = θ0, for some θ0, and, σ2 = σ2
0; for example, for the jth component σ2

j0 use
the sample variance of yij , for any j = 1, . . . ,m. Then, maximize (??) with respect to β to
obtain β0 for given θ0,σ2

0.

(2) Calculate y∗ij = yij/σj . Let y∗ = (y∗T1 , . . . ,y∗Tn )T where y∗i = (y∗i1, . . . , y
∗
im)T .

(3) Estimate β and θ: The ECME algorithm iterates between its E- and M-steps. In the (k+ 1)th
iteration of the E-step, the expectation Q(δ|δk) = E[`c(δ)|y∗; δk] is computed where δk =

(βk,θk,σ
2
k) is the estimated parameter after the kth iteration. This reduces to computing

E(bi|y∗i , δk) and E(bib
T
i |y∗i , δk), the expected values of the sufficient statistics of the miss-

ing data (Laird et al., 1987; Liu et al., 1994).

The maximization of theQ(δ|δk) in (k+1)th iteration is carried out using 3 CM steps. In the
first CM-step, θk+1 is found by maximizingQ(βk,θ,σ

2
k|δk) with respect to θ. In the second
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CM-step, first the unrestricted estimate βk+1 is found by maximizing the observed likelihood,
`0(β,θk+1,σ

2
k) with respect to β.

Next, to find the restricted MLE underRβ ≥ 0, solve for β̃k+1, where

β̃k+1 = arg min
{ n∑

i=1

(y∗i −Xiβ)T [V i(θk+1)]−1(y∗i −Xiβ) : Rβ ≥ 0
}
. (3.2)

In the third CM step, updates for σ2 are computed using a one-step Fisher approximation (as
described above) for iteration k + 1 of the form

σ2
k+1 = σ2

k + I(σ2
k)−1S(σ2

k). (3.3)

(4) Check for convergence. At (k+ 1)th iteration, comparing the jth components of δ (say, δj,k),
if |δj,k+1 − δj,k|,∀j, is less than a pre-specified convergence criterion, then stop. Otherwise,
go back to step 2.

It can be shown that the estimators produced by the algorithm are consistent (Nettleton, 1999;
Liu and Rubin, 1994).

4 Likelihood Ratio Tests
We consider testing hypotheses of the form

H0 : Rβ = 0 versus H1 : R1β ≥ 0 (4.1)

(with at least one strict inequality under H1) where R = (RT
1 ,R

T
2 )T is a k × p matrix of full row

rank, R1 is q × p with q ≤ k and R2 is (k − q) × p. For example, if one is interested in testing
whether the fixed effects have positive effect, then one would first set k = p = q, and then form
H0 : β = 0 and H1 : βi > 0, 1 ≤ i ≤ q, whereR = R1 are identity matrices.

The regularity conditions needed for the validity of the theorem are stated as Condition Q in
Silvapulle and Sen (2005, page 146); see also Self and Liang (1987). These conditions can be
verified for the scaled linear model similar to the proofs of Davis et al. (2012) and Sinha (2004).

Let δ̄ = (β̄, θ̄, σ̄2) be the ML estimate of δ under H0 (obtained by settingRβ = 0 in (??)) and
δ̃ = (β̃, θ̃, σ̃2) be the ML estimate of δ under H1. From (??), the likelihood ratio test statistic is
given by

LRT = 2[`0(δ̃)− `0(δ̄)], (4.2)

whose asymptotic distribution is given below.
Theorem 3.1 Under (??) and its assumptions, for t > 0 and under H0,

lim
n→∞

P (LRT ≥ t) =

q∑
i=0

wiP (χ2
i ≥ t), (4.3)

where the weights wi depend on the constraints and the related covariance matrix.
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Proof. The LRT in (??) equals

n∑
i=1

{
ln |Ψ̃|+ ln |V i(θ̃)|+

(
Ψ̃
−1/2

yi −Xiβ̃
)T
V i(θ̃)−1(Ψ̃

−1/2
yi −Xiβ̃)

}
−

n∑
i=1

{
ln |Ψ̄|+ ln |V i(θ̄)|+

(
Ψ̄
−1/2

yi −Xiβ̄
)T
V i(θ̄)−1(Ψ̄

−1/2
yi −Xiβ̄)

}
, (4.4)

where Ψ̃, Ψ̄ are obtained using σ̃, σ̄, respectively. For δ = (β,θ,σ2) being the true parameter
value, under H0, both δ̃, δ̄ → δ as n → ∞. Using Proposition 4.3.1(1) of Silvapulle and Sen
(2005), the asymptotic distribution of (??) as n→∞ is same as that of

min
Rβ=0

{
(Zn − δ)T [I(δ0)](Zn − δ)

}
− min
R1β≥0

{
(Zn − δ)T [I(δ0)](Zn − δ)

}
+ op(1), (4.5)

whereZn = n−1/2[I(δ0)]−1S(δ0),S(δ) = (∂/∂δ)`(δ), I(δ) = Eδ{(∂/∂δ) log(f(y, δ))(∂/∂δT )

log(f(y, δ))}. Let R∗ be the k × (p + g + m) matrix obtained by augmenting the matrix R
by g + m columns of zeroes. The parameters regions under H0 and H1 may be redefined as
H0 : {δ : R∗δ = 0} and H1 : {δ : R∗1δ ≥ 0} (with at least one strict inequality), respectively,
where R∗ = (R∗T1 ,R∗T2 )T is a k × (p + g + m) matrix of full row rank, R∗1 is q × (p + g + m)

with q ≤ k and R∗2 is (k − q)× (p+ g +m). Let the elements of the 3× 3 block matrix [I(δ)]−1

be denoted by Iij(δ). Then, it follows thatR∗1[I(δ0)]−1R∗T1 = R1I
11(δ0)RT

1 .
Using Proposition 4.3.1(2) of Silvapulle and Sen (2005), the asymptotic null distribution of (??)

is given by

lim
n→∞

Pδ0(LRT ≥ t|H0) =

q∑
i=0

wi(q,R1I
11(δ0)RT

1 )P (χ2
i ≥ t), (4.6)

from which (??) follows. �
As mentioned earlier, the distribution on the right side of (??) is known as chi-bar square. The

weights wi = wi(q,Σ), where Σ = R1I
11(δ0)RT

1 is the true asymptotic variance of the uncon-
strained MLE, can be computed exactly for q ≤ 3. For larger values of q, weights are estimated or
simulated (see Section 3.5 in Silvapulle and Sen, 2005).

As the chi-bar squared distribution may be difficult to calculate, the following bounds (Silvapulle
and Sen, 2005) on its tail probabilities may be useful. As it is known that

1

2

[
P (χ2

k−q ≥ c) + P (χ2
k−q+1 ≥ c)

]
≤

q∑
i=0

wiP (χ2
k−q+i ≥ c) ≤

1

2

[
P (χ2

k−1 ≥ c) + P (χ2
k ≥ c)

]
.

(4.7)
So one may reject H0 if the upper bound in (??) is less than α, or do not reject H0 if the lower
bound in (??) is greater than α where α is the significance level. But the test remains inconclusive
if 1

2

[
P (χ2

k−q ≥ c) + P (χ2
k−q+1 ≥ c)

]
≤ α ≤ 1

2

[
P (χ2

k−1 ≥ c) + P (χ2
k ≥ c)

]
.
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5 Simulation Studies
In our coding, we begin by importing the necessary packages MASS, psych, and quadprog from
R library. An additional package nleqslv has been used for the estimation related with chi-bar
square distribution. Our goal is to compare the performances of the unrestricted and restricted
estimates of δ in model (??) produced by the ECME algorithm. We also consider the empirical
significance levels of the LR test in (??) and its power.

The setup of our simulation is similar to that in Davidov and Rosen (2011) with modifications for
suitability of the heterogeneous model (??). Using n = 20,m = 5, p = 3, q = 2, g = 4, the jth row
in the Xi and Zi matrices are Xij = (1, x1ij , x2ij) and Zij = (1, x2ij), respectively. The variable
x1 is chosen independently of index j and given by xT

1i = (i, i, i, i, i). However, the variable x2
depends on j, and is given by xT

2i = (0, 1, 2, 3, 4), 1 ≤ i ≤ n. The errors are εi
iid∼ N(0, I5). The

terms bi
iid∼ N(0,D), with D being 2 × 2 with dii = 1, dij = .5, i 6= j. The scale matrix is set as

Ψ = diag(0.64, 0.81, 1.0, 1.21, 1.44). We ran simulations using other values ofD and σ2 as well as
other covariate configurations with similar results.

The regression coefficients β = (β0, β1, β2) were restricted to satisfy β1 ≥ 0, β2 ≥ 0.
Estimation: We used the algorithm developed in Section 3 to estimate the parameters of the model.
Let MSE0 denote the mean square errors (MSE) of the unconstrained estimators, and, let MSE1

denote the MSE of the constrained estimators. The relative MSE of the constrained to the uncon-
strained estimators is given by MSE1/MSE0.

Table 1: Relative mean square errors MSE1/MSE0 for the estimates

β β0 β1 β2 D11 D12 D22 σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

(0, 0, 0) 0.56 0.40 0.55 1.04 1.02 1.03 1.0 1.0 1.03 1.01 0.99

(0, 0.05, 0.05) 0.70 0.65 0.55 0.93 1.04 0.99 0.97 0.99 1.01 0.98 0.95

(0, 0.10, 0.10) 0.85 0.84 0.58 0.85 1.02 0.97 0.97 0.97 0.99 0.97 0.93

Table 1 shows the relative mean square errors for the estimates of β,D and Ψ using 3,000 repli-
cations. As can be seen, the proposed method improves on the unconstrained estimates, especially
for the regression coefficients. For smaller values of the regression parameters, the improvement can
be more than 50%. The relative MSE of the variance componentsD and Ψ are close to 1 indicating
the constraints have little effect on estimation of these parameters. We experimented using larger
sample sizes and different initial values for the parameters which showed similar results.
Testing: We consider testing H0 : Rβ = 0 versus H1 −H0, H1 : Rβ ≥ 0, where

R =

0 1 0

0 0 1

 , β = (β0, β1, β2)T .

We present the empirical significance levels in Table 2 using 3,000 replications for different sample
sizes. As is evident from Table 2, the empirical significance levels approach the nominal level
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α = 0.05 as the sample size grows, as expected. Also, the restricted test seems to perform slightly
better than the unrestricted test as their empirical levels are closer to the nominal level.

Table 2: Empirical significance levels of unrestricted and restricted tests

n unrestricted restricted

20 0.076 0.047

50 0.058 0.045

100 0.055 0.051

Table 3: Simulated powers of the unrestricted and restricted tests

Unrestricted Restricted

Sample sizes β1 = .01 β2 = .03 β1 = .01 β2 = .03

20 0.075 0.101 0.066 0.111

30 0.102 0.174 0.122 0.209

40 0.114 0.314 0.158 0.368

50 0.138 0.539 0.352 0.599

60 0.429 0.759 0.488 0.807

100 0.529 0.999 0.591 1.000

We also compared the powers of unrestricted and restricted tests. Table 3 shows that incorporat-
ing the constraints improves the power of the likelihood ratio tests, especially in small and medium
sample sizes. Improvement is substantial in situations where the power is low (near H0). We con-
clude from Table 3 that the restricted tests perform slightly better than the unrestricted counterpart
as their empirical levels are closer to the nominal level (Table 2).

6 Analysis of the Junior School Project Data
The Junior School Project data is a longitudinal study of 1,618 pupils from 50 primary schools
chosen at random among the 636 schools under the Inner London Education Authority in 1980. The
‘jsp’ in R programming software is a data frame with 3236 observations on 9 variables as follows.
There are six categorical independent variables with levels as follows: school (1 to 50), class (1 to
4), student ID (1 to 1402), gender (f or m), year (0, 1 or 2), social (father’s socioeconomic status
1 to 9 from highest to lowest) and one quantitative independent variable: Raven (School admission
test score 0 – 40). The response variables are mathematics test score (range 0 – 40) and English test
score (range 0 – 100).
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Figure 1: Plots of English versus Raven and mathematics versus Raven scores to show the differ-
ences in dispersion of output variables

The variables (gender, social, Raven) are taken as fixed effects (with an intercept term), and the
corresponding fixed effect vector is β (hence, p = 4). However, a student could be admitted to any
one school from a pool of different schools, to any one of different classes available in that school,
and be assigned a random ID, so the variables school, class and student ID are taken as random
effects, which are associated (in that order with an intercept term, hence, q = 4) with the random
vector b as those variables could have different factor effects on a student’s overall test score.

Outcomes are yij , j = 1, 2, i = 1, 2, ..., 1618, where yi1 = English test score and yi2 = mathe-
matics test score. The model (??) is fit to data with n = 1618,m = 2, p = 4, q = 4, g = 10 (as the
4×4 covariance matrix of b has 10 non-duplicated terms). The standard deviation of the English test
scores is 24.7123, and the standard deviation of Mathematics test scores is 7.63738 (see Figure 1).
Since the standard deviations of these test groups are quite different, appropriate scaling is needed,
and model (??) would be appropriate.

Based on the discussion in Section 1 on prior knowledge regarding relation between the test
scores and the fixed effect variables, we set constraints as H1 : β1 > 0, β2 < 0, β3 > 0. The
maximum likelihood estimates of various parameters are obtained using the ECME algorithm as
described in Section 3 along with the Fisher approximation method. The unrestricted estimates are
β̂ = (0.836, 0.281,−0.041, 0.085), σ̂2

11 = 389.052, σ̂2
21 = 69.805, and with D = (dij), for i ≥ j,

d̂ij = 0.741, 0.232, 0.241, −0.009, 0.723, 0.232,−0.026, 0.741,−0.009, 0.0009. The restricted
estimate underH1 ofβ is identical to its unrestricted estimate since the unrestricted estimate satisfies
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the constraints specified in H1 spontaneously. Under H0, the restricted estimates of variances are
σ̂2
10 = 252.796, σ̂2

20 = 55.496, and β̂0 = 3.440. The restricted estimates, under H0, ofD remained
the same as those under H1.

When testing H0 : β = 0 versus H1 −H0, where H1 : β1 ≥ 0, β2 ≤ 0, β3 ≥ 0, the likelihood
ratio test statistic is 4649371 which is larger than the chi-bar square critical value of 2.786 (using
estimates under H0), so we reject H0 with a p−value of 0.0000 (with 5% significance level). Using
an unconstrained test, one would still reject H0 with a p−value of 0.0000 (with 5% significance
level) and conclude that the variables gender, social and Raven affect the English and Mathematics
test scores but would not be able to detect the direction of influence with respect to the levels of each
variable.

7 Discussion

Scaled mixed models are improved versions of mixed models which considers heterogeneity of
multiple response variables. We considered an SLMM model where its parameters may be subject
to some restrictions which arise naturally in many researches due to the nature of the problem or
the data. For example, in Junior School Project data, one would expect a pattern of female test
scores to be higher than those of male, students from higher social class to have higher scores,
etc. Such constraints improve the analysis of data and are easily incorporated at the expense of
additional computations. We develop the necessary methodology for the constrained inference by
proposing an ECME-based algorithm for estimating the regression parameters. In simulations, the
proposed methods with constrained estimators demonstrate an improvement in terms of MSE over
the unconstrained estimators. In some settings, the improvement are substantial. For example, for
values of the parameters close to the boundary of the parameter space up to 50% improvement was
observed in simulations.

Hypotheses testing procedures that incorporate the constraints are also developed. It is shown
with simulations that incorporating constraints results in higher power overall, and in some cases
substantial gains are noted. The methodology is used to analyze English and mathematics test scores
from Junior School Project study where effects of specific directions of gender, social and admission
test are shown to be significant only if one accounts for the constraints.

any real-world problems have inherent restrictions that must be considered in order to obtain a
feasible solution. Analyzing multiple outcomes can be challenging, but it also offers opportunities to
gain insight into complex systems. We scale the multiple outcomes using the error standard deviation
σj . We use the ECME algorithm along with the Fisher approximation method to obtain the MLEs of
various parameters of the model. In this method, the unrestricted and restricted estimation methods
take approximately similar processing times so the restricted method would be recommended when
constraints are present. We did not compare our method with that of Lin et al. (2000) because of the
inaccuracy in variance estimation of the latter as mentioned earlier.

For future directions, a natural extension would be to consider a constrained multivariate version
of the mixed linear model with heteroscedastic scales. It would also be of interest to consider
marginal models with heteroscedasticity where parameters satisfy some restrictions. We used R for
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all the programming in this paper and the codes are available from authors to implement the method.
Finally, we note that the methodology we propose is general and can be used in any longitudinal
setting and not only in the context of test score data.
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